

Passive Transport Mechanisms

Aim: To understand how water potential affects cell tonicity

http://www.kscience.co.uk/animations/water_potential.swf

Finishing the Egg-Speriment

- → CAREFULLY wash eggs.
- → Weigh eggs & record data (*quantitative*) on a sheet that can be handed to Ms for data input
- → Line up eggs with everyone else's. Can you see a differences?
- → Take *qualitative* notes/observations

Egg photo shoot

Coursework

- → WJEC CW Completed in exam style conditions
- → 3 sections of coursework to be completed by hand
- → Table, Graph (no extrapolation!), qualitative data, analysis of results and further work (research!!!)
- → Due next lesson
- → 2 hours minimum

Learning Objectives

- 1. **Describe** passive processes of movement across cell membranes (C)
- 2. Explain water potential using osmosis and 4s / 4p
- 3. Explain the effects of hyper hypo and iso-tonic solutions on The Naked Egg.

Explain what has happened to the water in terms of Ψs and Ψp

Right side has lower/more negative water potential (Ys). As water moves to an area of lower water potential water move to the right until $\Psi_p + \Psi_s$ on the right is equal to that of the left.

Effect of solution concentration on Cells (RBCs)

Hypotonic Solution
 Hypo = less solute than cell.

Water drawn INTO the cell

Isotonic Solution
 Iso = same amount of solute

No change - Dynamic Equilibrium

Hypertonic Solution
 Hyper = more solute than cell.

Water drawn OUT of the cell

Decreasing water potential of solution cells WP = 0 are suspended in. WP = -

Is the solution hypo, iso, or hyper-tonic to the cell?

http://www.kscience.co.uk/animations/water_potential.swf

Name:

Set:

Osmosis & Water Potential

Define osmosis in terms of water potential:

Osmosis is the way water moves from an area of <u>high water</u> <u>potential</u> or high Ψ to an area of <u>low water potential or low</u> Ψ , through a <u>selectively-permeable</u> membrane.

What is Ψ ?

Using water, explain why each red blood cell looks like it does:

hasn't gained or lost water. Equal water pot
Hypertonic - Hypertonic cell necrotises as it's lost
water due to solution of higher water pot.
Hypotonic - Hypotonic cell is swelled as it has
gained water in solution of lower water potential
What is \Psi is an animal cell? Solute potential only: \Psi

- Draw what will happen to the water in this beaker.
- Draw arrows to show the direction the water moves.
- Label which sides have high/low water potential.
- 4. Add an arrow to show where Ψp will affect the solution.
- 5. Describe how the water moves:

Q1: Where have you heard the word isotonic before? Sports drinks?

Q2: Why do you think this is beneficial for sports drinks? Fast uptake of glucose without dehydrating

Q3: What is the difference between putting an animal cell and a plant cell in to hypo and hypertonic solutions?

Hypotonic: Plant cell loses water, membrane pulls away from cell wall (plasmolysed). RBC necrotises

Hypertonic: Plant cell become turgid due to Up of cell wall, animal cell bursts - lyses.

Q4: What is Ψ equal to in a plant cell? Solute potential

Plamolysed

Turgid

Water Potential

Water moves from an area of <u>high</u> wp to an area of <u>low</u>

1.
What must we do to equalise this U bend?

2. Which side has lower Ψ?

